A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features
نویسندگان
چکیده
In this work, we first propose an original and efficient computational framework to model continuous diffusion MRI (dMRI) signals and analytically recover important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Then, we develop an efficient parametric dictionary learning algorithm and exploit the sparse property of a well-designed dictionary to recover the diffusion signal and its features with a reduced number of measurements. The properties and potentials of the technique are demonstrated using various simulations on synthetic data and on human brain data acquired from 7T and 3T scanners. It is shown that the technique can clearly recover the dMRI signal and its features with a much better accuracy compared to state-of-the-art approaches, even with a small and reduced number of measurements. In particular, we can accurately recover the ODF in regions of multiple fiber crossing, which could open new perspectives for some dMRI applications such as fiber tractography.
منابع مشابه
Parametric Dictionary Learning for Modeling EAP and ODF in Diffusion MRI
In this work, we propose an original and efficient approach to exploit the ability of Compressed Sensing (CS) to recover diffusion MRI (dMRI) signals from a limited number of samples while efficiently recovering important diffusion features such as the ensemble average propagator (EAP) and the orientation distribution function (ODF). Some attempts to sparsely represent the diffusion signal have...
متن کاملParametric Dictionary Learning in Diffusion MRI
In this work, we propose an approach to exploit the ability of compressive sensing to recover diffusion MRI signal and its characteristics from a limited number of samples. Our approach is threefold. First, we learn and design a parametric dictionary from a set of training diffusion data. This provides a highly sparse representation of the diffusion signal. The use of a parametric method presen...
متن کاملTensorial Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning
High Angular Resolution Diffusion Imaging (HARDI) can characterize complex white matter micro-structure, avoiding the Gaussian diffusion assumption inherent in Diffusion Tensor Imaging (DTI). However, HARDI methods normally require significantly more signal measurements and a longer scan time than DTI, which limits its clinical utility. By considering sparsity of the diffusion signal, Compresse...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملRegularized Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning
Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2013